文章摘要
赵健,袁瀚,梅宁*.燃煤锅炉飞灰含碳量的BP神经网络模型[J].,2016,15(6):499-504
燃煤锅炉飞灰含碳量的BP神经网络模型
The BP neural network model of fly ash carbon content of Coal-fired Boiler
投稿时间:2016-05-09  修订日期:2016-07-13
DOI:10.13738/j.issn.1671-8097.2016.06.012
中文关键词: 飞灰,燃煤锅炉,BP神经网络
英文关键词: fly  ash, coal-fired  boiler, BP  neural network
基金项目:国家自然科学基金资助项目(51679225,51276174)
作者单位E-mail
赵健 中国海洋大学工程学院轮机工程 zhaojian@ouc.edu.cn 
袁瀚 中国海洋大学工程学院轮机工程  
梅宁** 中国海洋大学工程学院轮机工程 nmei@ouc.edu.cn 
摘要点击次数: 580
全文下载次数: 1
中文摘要:
      燃煤锅炉是复杂的多变量系统,其飞灰的含碳量形成机理复杂,不能用简单的数学公式估算。现场实炉测试这些数据具有工作量大,测试工况有限等缺点;燃煤锅炉运行参数及燃料特性等因素影响着飞灰的含碳量,其相互耦合,导致分析数据过程困难。神经网络建模将燃煤锅炉视为黑箱,应用该方法可以良好的描述其输入输出之间的黑箱特性,因此,近年来人工神经网络应用广泛。利用燃煤锅炉试验数据,采用3层BP神经网络构建了锅炉飞灰的含碳量排放特性模型。通过锅炉的实测数据验证,该BP神经网络对飞灰含碳量相对预测误差在[0.19%,0.5%]之间,预测效果良好。测试结果表明,本文建立的神经网络预测模型可以准确逼近验证样本数据,也能够较好的逼近非验证样本数据,具有良好的泛化能力。
英文摘要:
      Coal-fired boiler is a complicated multi-variable system, and the formation mechanism of the carbon content of fly ash is complicated which cannot be estimated by simple mathematical formula. The disadvantages of furnace tests include big data workload, test conditions, etc. Besides, the carbon content of fly ash is affected by factors of the coal-fired boiler operation parameters and the fuel characteristics, which causes the difficulty in data analysis. The advantage of the neural network modeling method is that it treats the coal-fired boiler as a black box, thus the input and output of the black-box can be well described. By using coal-fired boiler test data, a three layer BP neural network model was established to conduct the analysis on the boiler fly ash carbon emission features. The validation of the measured data shows that the relative prediction error of the model is between 0.19% and 0.5%. Further, the results show that the data of both the validation sample and the ordinary sample can be accurately predicted with assistance of this modelling method.
查看全文   查看/发表评论  下载PDF阅读器
关闭