文章摘要
高乙栋,董震,吕明新,赖艳华.管翅式换热器遗传算法优化[J].,2021,20(4):318-323
管翅式换热器遗传算法优化
Optimization of genetic algorithm for finned tube heat exchanger
投稿时间:2019-10-25  修订日期:2020-05-07
DOI:10.13738/j.issn.1671-8097.019212
中文关键词: 管翅式换热器  单目标遗传算法  多目标非支配排序遗传算法  优化
英文关键词: finned tube heat exchanger  single objective genetic algorithm  non-dominated sorting genetic algorithm  optimization
基金项目:苏州市重点产业技术创新-前瞻性应用研究项目(NO. SYG201834)
作者单位E-mail
高乙栋 山东大学能源与动力工程学院 1052210621@qq.com 
董震 山东大学苏州研究院  
吕明新 山东大学能源与动力工程学院  
赖艳华* 山东大学能源与动力工程学院 laiyh@sdu.edu.cn 
摘要点击次数: 273
全文下载次数: 60
中文摘要:
      管翅式换热器作为一种高效的换热设备,提升其换热效率和降低投资成本显得至关重要。文章通过单目标遗传算法(GA)和多目标非支配排序遗传算法()对管翅式换热器进行优化设计,设置翅片高度、翅片间距、管长、横向管数和纵向管数5个自变量的合理设计范围,单目标优化选用换热器效率、压降熵产和最大收益3个目标函数,根据热力学第一、二定律以及经济分析进行目标优化,比较三者的优化结果从而得到最佳优化目标函数,以及在特定运行条件下换热器的最佳设计方案,其中运行净利润能直接反应出换热器效益;多目标采用单目标优化中换热器传热效率和总投入为目标函数,进一步验证优化的合理性和经济性
英文摘要:
      Tube-fin heat exchanger as an efficient heat exchange equipment, it is essential to further improve its heat exchangers’ heat transfer efficiency and reduce investment costs. The paper optimizes the design of tube-fin heat exchangers through single-object genetic algorithm (GA) and multi-objective non-dominated sorting genetic algorithm (), and setting the reasonable design range of the five independent variables which are fin height, fin spacing, tube length, transverse tube number and longitudinal tube number. For single-objective optimization, three objective functions of heat exchanger efficiency, pressure drop entropy production, and maximum return are used. Target optimization based on the first and second laws of thermodynamics and economic analysis. And the data of the three are compared to obtain the optimal optimization objective function. Multi-objective uses the heat exchanger efficiency of the single objective optimization and total investment under non-dominated conditions as the objective function, thus further verifying the rationality and economy of the optimization.
查看全文   查看/发表评论  下载PDF阅读器
关闭